29 research outputs found

    Projective-Plane Iteratively Decodable Block Codes for WDM High-Speed Long-Haul Transmission Systems

    Full text link

    MIMO free-space optical communication employing subcarrier intensity modulation in atmospheric turbulence channels

    Get PDF
    In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects

    On Entanglement-Assisted Multistatic Radar Techniques

    No full text
    Entanglement-based quantum sensors have much better sensitivity than corresponding classical sensors in a noisy and lossy regime. In our recent paper, we showed that the entanglement-assisted (EA) joint monostatic–bistatic quantum radar performs much better than conventional radars. Here, we propose an entanglement-assisted (EA) multistatic radar that significantly outperforms EA bistatic, coherent state-based quantum, and classical radars. The proposed EA multistatic radar employs multiple entangled transmitters performing transmit-side optical phase conjugation, multiple coherent detection-based receivers serving as EA detectors, and a joint detector. © 2022 by the author.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore